
Distributed Intelligent Planning and Scheduling (DIPS)
Subrata Das, Dan Knights, Curt Wu

Charles River Analytics, Inc.
725 Concord Avenue

Cambridge, MA 02138, USA
+1 617 491 3474

{sdas, dknights, cwu}@cra.com

Walt Truszkowski
NASA Goddard Space Flight Center

Code 588
Greenbelt, MD 20771, USA

+1 301 286 8821

Walt.Truszkowski@gsfc.nasa.gov

ABSTRACT

In this paper, we present a system for Distributed Intelligent
Planning and Scheduling (DIPS) that helps a spacecraft function as
an autonomous agent. A DIPS-based spacecraft receives only
high-level goals from ground station operators, and performs its
own planning and scheduling onboard, achieving these goals with
onboard subsystems and in cooperation with other spacecraft.
The task decentralization in DIPS employs a domain distribution
algorithm that typically creates a feasible schedule after the first
coordination effort, thereby decreasing inter-agent negotiation
during the scheduling process. The reasoning performed by DIPS
agents to optimize time and resource usage while maintaining flight
rules and constraints is based on a constraint propagation
paradigm. Priority-based scheduling is implemented, and a
hierarchical inter-agent confirmation/authorization system is used
for global goal coordination. An enhanced prototype is developed
and demonstrated using space-based scenarios involving onboard
instruments and a satellite constellation. The vertically layered
architecture of the DIPS prototype integrates: 1) Java-based agent
inference engine; 2) Prolog platform SICStus for constraint-based
reasoning; and 3) KQML for inter-agent communication. We are
specifically targeting our effort to enhance the planning and
scheduling capability of NASA’s planned nanosatellite
constellations.

Keywords

Multi-agent system, planning, scheduling, communication,
coordination, constraint propagation, KQML, and Prolog.

1. INTRODUCTION
Spacecraft autonomy has the potential for effecting significant
cost savings in mission operations by reducing the need for
dedicated ground staff. In an autonomous operating mode,
operators will communicate only high-level goals and deadlines

directly to the spacecraft. The spacecraft will then perform its
own planning and scheduling by decomposing a goal into a set of
sub-goals to be achieved in cooperation with other spacecraft in
the environment. In this paper, we present the DIPS system that
helps a spacecraft function as an autonomous agent by
incorporating this distributed approach to onboard planning and
scheduling.

The term planning refers to the generation of activities that satisfy
a current set of goals. For example, a planning process to satisfy
the request for an image generates activities such as rolling the
camera to the correct position and activating the camera shutter.
The term schedule describes an association of these specific
activities with particular start and end times by satisfying
temporal constraints (e.g., rolling should be performed before the
shutter action). The onboard spacecraft subsystems must execute
these time-sensitive activities autonomously to achieve the goals,
and if none of the subsystems of the spacecraft is capable of
executing an activity then cooperation from another spacecraft in
the environment is required.

Two major trends for task representation in the history of AI
planning have been observed (Georgeff 1987): goal achievement
(GA) and hierarchical task network (HTN). The origin of GA-
based planning is in STRIPS (Fikes 1971). In this model of
representation, an initial situation, a set of possible actions, and a
goal that is to be achieved are given. Planning consists of finding a
sequence of actions that would lead from the initial situation to the
final one. Several planners were subsequently built on the GA
model including TWEAK (Chapman 1987), and SNLP
(McAllester 1994). In a planner based on the HTN representation,
which originated with NOAH (Sacerdoti 1974), planning proceeds
by selecting a non-primitive task, decomposing it into subtasks
using a library of available decomposition methods, and then
detecting and resolving conflicts with other tasks. This process is
repeated until no non-primitive tasks remain and all the conflicts
have been resolved. Typical examples of HTN planners are
FORBIN (Dean 1988), and NONLIN (Tate 1977). There are also
planners combining features from these two such as O-Plan
(Currie 1991) and SIPE (Wilkins 1988).

Given a representation in either GA or HTN, solving a planning
problem can be viewed as a straightforward search problem, but in
general the HTN paradigm can lead to more efficient planners
because it allows the user to limit the search space by guiding the

planner towards acceptable solutions. A typical implementation
of the search engine of a planner operates on a temporal database
such as the HSTS system (Muscettola 1994) and Time Map
Manager (Boddy 1994). The search engine posts constraints to
the database. The temporal database then constructs a constraint
network and provides a constraint propagation service (LePape
1990) to verify the global consistency of the posted constraints
with the goals, rules and constraints of the spacecraft. Both the
consistency checking and the search for an optimal solution in
cooperation with other agents in the environment are
computationally intractable, that is, NP-hard. A distributed
approach to planning and scheduling allows cooperation among
agents in the environment and increases efficiency in the search for
an optimal solution by partitioning the whole search space.

In recent years, there has been a growing interest in agent-oriented
problem solving (CACM 1994), which provides the basis of our
proposed distributed solution (Chaib-draa 1992) to planning and
scheduling. The agent-oriented problem-solving environment
increases efficiency and capability (Rosenschein 1982) by
employing a set of agents that communicate and cooperate with
each other to achieve their goals. We use the term agent to refer to
an entity that operates autonomously or semi-autonomously
while interacting with other agents in the environment by means of
communication. Although types of agents range from software
agents (Genesereth and Ketchpel 1994) implementing the behavior
of humans, machines or hardware, to mechanical or electronic
robots (Simmons 1991) with the capability of perceiving or
sensing the environment and executing appropriate actions, our
assumption is that every agent will have an interface that
understands a common communication language.

In our envisioned distributed (or equivalently, multi-agent)
environment (Conry 1988; Georgeff 1983), a set of problem-
solving autonomous agents (spacecraft and onboard subsystems of
a spacecraft) based on DIPS communicate, cooperate, and
negotiate to achieve high-level goals through planning and
scheduling. Distributed planning and scheduling emphasizes a
decentralized organization in which schedules are generated and
executed cooperatively and concurrently by agents. This can be
contrasted with a centralized planning environment in which goals,
rules, and constraints from individual agents are accumulated at a
central place, and a centralized planner is used to generate a global
schedule. The centralized approach is particularly unsuitable when
the problem is inherently distributed such as in a spacecraft
environment where each subsystem or spacecraft functions
autonomously.

The domain knowledge of tasks and their components in DIPS are
manifested through a hierarchical language taking into account
spacecraft operational aspects and resource constraints. The task
decentralization in DIPS is performed by employing a domain
distribution algorithm that typically allows a feasible schedule to
be found after only the first coordination effort, therefore greatly
decreasing the need for inter-agent communication during the
scheduling process. The reasoning performed by DIPS agents for

scheduling tasks by optimizing time and resources is based on a
constraint propagation paradigm. An enhanced prototype has
been developed and demonstrated using space-based scenarios
involving onboard sensors and a satellite constellation. The
vertically layered architecture of the DIPS prototype integrates: 1)
Java-based agent inference engine; 2) Prolog platform SICStus for
constraint-based reasoning; and 3) KQML for inter-agent
communication.

The rest of the paper is organized as follows. First we describe a
space-based scenario to illustrate the envisioned operating mode of
a spacecraft agent: to achieve high level goals through distributed
planning and scheduling. Then we present the DIPS architecture in
Section 3 that can be instantiated appropriately to implement an
agent in the environment. The hierarchical syntax for modeling an
agent’s domain knowledge of tasks is presented in Section 4.
Section 5 describes the protocol for inter-agent communication.
Section 6 contains our approach to decentralization and
coordination of tasks among agents. The functionality of the
current prototype is described in Section 7. Finally, we summarize
our work in Section 8 and lay out our future plan for extending the
work.

2. SATELLITE CONSTELLATION
SCENARIO
We present a scenario that will illustrate our envisioned
distributed planning and scheduling by incorporating several key
problem areas prevalent in a distributed scheduling environment.
The simulation of this environment consists of a constellation of
satellites, each with a number of local resources and the knowledge
of hierarchical task decompositions.

The primary goal of the envisioned distributed system is to
successfully distribute high-level task requests to multiple
independent resources and to maintain the consistency of
constraints placed on those requests. In trying to fulfill this goal,
however, there are several problems that can arise. These include
replanning due to over-scheduling of a resource, forced scheduling
of high priority requests, increased priority based on a request’s
Time To Live (TTL), accommodation of lapses in agent
communication/availability, negotiation with competitive
satellites, resource/property management, and use of idle time for
schedule optimization.

2.1.1 Scheduling Environment
The scenario consists of a constellation of low-Earth orbiting
spacecraft that have cross-link communication capability, each
carrying nearly the same suite of instruments. Controlling the
constellation is done via a futuristic network of ground stations, in
which each ground station can communicate to only one satellite at
a time. Each onboard instrument is locally controlled; requests can
be sent to the network from any ground station. A request is
defined as a goal that requires use of an instrument and associated
data memory storage, containing start/stop times and operational

parameters. Agents can communicate with each other in order to
coordinate high-level goals and to maintain global constraints.

2.1.2 Scenario Hierarchy Specification
The Satellite Constellation Scenario has the following hierarchy:

SAT5 SAT4

SAT6

SAT1 SAT2

SAT3Home

MRIS5 Thruster5

HI5

AMSU5

OMS5

MSR5

Figure 1: Scenario Hierarchy

?? Home (Ground control)—This represents a ground control
station on Earth. It has 6 satellite children, “SAT1” through
“SAT6”.

?? SAT1-SAT6: Each of these DIPS-based agents represents a
satellite in the constellation. Every satellite has essentially
the same collection of instruments onboard with slight
variations in capability/efficiency.

?? Onboard Resources: Ozone Mapping Spectrometer (OMS),
Microwave Scanning Radiometer (MRS), Moderate
Resolution Imaging Spectroradiometer (MRIS),
Hyperspectral Imager (HI), Advanced Microwave Sounding
Unit (AMSU), Thrusters Agent.

Each resource onboard a DIPS Satellite Agent has its own local
DIPS Resource Agent. There may also be some intermediate DIPS
System Agents introduced on each satellite in order to manage
groups of related resources.

2.1.3 Basic Distributed Scheduling
In order to demonstrate basic distributed scheduling capabilities,
the scenario begins with a number of high-level goal requests
introduced to the constellation by the “Home” ground control
agent. Every capable DIPS SAT Agent decomposes the task, and
corresponding subtask requests are sent to onboard resource and
system agents. The scenario includes multiple compound task
requests with overlapping time domains. The DIPS-based Agents
perform a reasonable effort of coordinating these task distributions
so that most are successfully scheduled on the first pass without
the need for rescheduling or inter-agent negotiation.

2.1.4 Special Situations
In order to force over-scheduling on some local onboard resources,
the scenario includes several conflicting requests. Every DIPS

SAT Agent will prefer to schedule its subtasks on the least
expensive resources available—sometimes at the exp ense of over-
scheduling a preferred local resource with tentative subtask
requests. Top priority requests are introduced to the constellation
as forced requests, which will always succeed and be locked into
the necessary local schedules, even if other non-forced tasks have
been scheduled on those resources at conflicting times.

 As a task nears its execution time, its Time To Live (TTL)
decreases. A DIPS-based agent will process a task request with a
very short TTL before another task request with a long TTL, even
if the latter is of higher priority.

The scenario also includes temporary lapses in communication
between specific satellites and other DIPS agents in the
community. A satellite will move out of the range of a ground
station for a specified time period, during which a message relay
system using other agents in the community may still allow
messages to reach their destination. For example, every DIPS
agent that receives a task request addressed to “ALL” immediately
forwards the request to all of its siblings in the community to
ensure that the requests reach all potential executors.

It is conceivable that a DIPS agent may wish to negotiate with
non-friendly satellites in a competitive environment. The scenario
includes at least one situation that requires a satellite to use a more
expensive competitor satellite in order to complete a task when a
request cannot be accommodated locally.

An important real-life issue in a satellite constellation is the
management of resources and physical properties. For example, an
image of a certain region of Earth can only be taken within a
certain time frame while a satellite is over that location. There may
also be certain constraints on power consumption that affect
resource availability. The scenario includes several task requests
that require a DIPS Satellite Agent to reason about its resources
and physical properties. Satellites also are required to perform
certain mandatory maintenance tasks throughout the scenario.

The scenario allows some idle time for each satellite during which
it may explore other feasible solutions to the problem in order to
optimize its schedule and accommodate as many task requests as
possible. If all requests have been successfully decomposed, a
satellite can use its idle time to search for more optimal usage of
time and resources.

3. DIPS AGENT ARCHITECTURE
The architecture of a DIPS agent is deliberative: there is an explicit
symbolic representation of the model of the dynamic environment,
and DIPS agents make decisions via logical reasoning based on
pattern matching and symbolic manipulation. Several different
deliberative agent architectures have been proposed in the
literature, and two of them are most prominent: horizontally
layered architecture (Ferguson 1992) and vertically layered
architecture (Muller 1994). Either layered approach models an
agent as consisting of several hierarchical functional modules
representing different requirements of an agent, possibly

incorporating communication, reaction, inference for planning or
scheduling, perception, knowledge maintenance, etc. Each layer in
a horizontally layered architecture has access to both the
perception and the action components whereas in a vertical
approach, only one layer has direct interface to the perception and
action.

The architecture we have adopted is displayed in Figure 2 and it
fits into the vertically layered category. The three layers are the
world interface layer, the inference layer, and the network
management layer. A DIPS agent’s knowledge base is also split
into three modules corresponding to the three layers.

3.1 World Interface Layer
The world interface layer contains a DIPS agent’s facilities for
perception, action, and communication, which all require a detailed
knowledge about the environment. A DIPS agent’s world model
contains information about the environment such as the locations
and capabilities of other agents. The world interface layer enables
a DIPS agent to communicate with other agents in the environment
and perform activities related to planning and scheduling such as
sending and receiving requests, responding to a request, etc.

3.1.1 Action and Perception
The action and perception facilities can be handled through an
advanced real-time scripting language. A DIPS agent’s actions will
be performed via calls to scripts that interact with local hardware.
We are exploring integration with the Spacecraft Command
Language (SCL) developed by Interface & Control Systems (ICS
1999). SCL, with its innovative Real-Time Engine (RTE), is
especially well suited for our real-time scheduling application. The
RTE supports both time- and event-based script scheduling as
well as real-time resource monitoring and exception handling.

Constraint
Management

Inference Layer

World Interface

KQML

CommunicationAction/Perception

Scripting
Language

Figure 2: Vertically Layered DIPS Agent Architecture

Through such an interaction, schedules generated by the inference
layer could be actuated on local resources. The world knowledge,
or information about the states of these resources, may be
gathered through sensor data. The inference layer can access this
through the scripting language, which provides the perception
component of the world interface.

3.1.2 Communication
All inter-agent communication and knowledge manipulation is
done via message passing. A DIPS agent uses messages in
Knowledge Query and Manipulation Language (KQML)
compliant format to communicate goal requests, goal
confirmations/denials, capability insertions, and other standard
KQML performatives. The world interface layer sends and
receives messages from other agents in the community and passes
them to the inference layer to be handled appropriately.

3.2 Inference Layer
Written entirely in Java, the inference layer of the DIPS prototype
agent applies its domain knowledge to goal-related messages in
order to decompose compound task requests or to schedule
primitive tasks on local resources.

The domain knowledge consists of the knowledge of the
application such as definitions of different task abstractions and
the effects of a task when it is carried out. Although most of the
domain knowledge is static for the duration of a particular
application, it can still be manipulated at runtime through message
passing. When a new resource comes online, for example, any new
relevant scripts or task definitions can be added to a DIPS agent’s
domain knowledge through capability insertions. The content of
the domain knowledge and the functionality of a DIPS agent’s
inference layer depend on the type of agent. The DIPS system
currently recognizes two distinct subclasses within the DIPS agent
architecture: System Agents and Resource Agents.

3.2.1 DIPS System Agent
A DIPS System Agent represents a system of primitive resources,
so the capabilities of a DIPS System Agent (e.g., a Satellite)
consist only of decomposable compound tasks. A DIPS System
Agent does not maintain a local schedule for it has no local
resources; rather it coordinates a group of subagents, some of
which may also be System Agents. When a DIPS System Agent
receives a high-level goal request, it uses a predefined
decomposition from its domain knowledge to create a plan for that
task, and then uses its constraint management layer to create a
feasible schedule for that plan. Each subtask in the plan is assigned
a certain time interval based on the decomposition constraints, and
subtask requests are sent out to all subagents.

3.2.2 DIPS Resource Agent
A DIPS Resource Agent represents a physical onboard resource.
Its capabilities are all primitive tasks that can be performed via
calls to predefined low-level scripts. When a DIPS Resource
Agent receives a primitive task request, it posts new temporal
constraints describing the task to the constraint database. The

inference layer uses the constraint management layer to verify the
feasibility of its new augmented local schedule and to generate an
instance if feasible.

3.3 Constraint Management Layer
The constraint management layer of a DIPS agent is based in a
version of the Prolog language called SICStus Prolog, developed by
the Swedish Institute of Computer Science (SICS). SICStus Prolog
has capabilities for Constraint Logic Programming in Finite
Domains (CLPFD) that allow several important developments.
Most notably, CLPFD allows arithmetic constraints on variables
to be introduced into a program, and it can perform arithmetic on
these variables even when they are uninstantiated (Pountain
1995). For example, one interval [SA,EA] can be constrained to
overlap a second interval [SB,EB] using the following constraints
(see Section 6.1.1):

SA=<SB,

EA>=SB,

EA=<EB.

A database of constraints is maintained by the inference layer of a
DIPS agent, and the SICStus Prolog emulator is used as a back-end
schedule solver. When a DIPS Resource Agent receives a task
request, it posts any new constraints regarding that task to the
constraint database and then queries the Prolog constraint
management layer for a feasible instance of its local schedule.
When the new constraints are propagated through the constraint
network, the schedule will reflect these changes.

A DIPS System Agent uses its constraint management layer for a
different purpose. Because a DIPS System Agent has no local
resources and therefore no local schedule to maintain, it uses the
SICStus emulator to generate regional schedules for individual task
decompositions.

4. HIERARCHICAL MODELING
As mentioned in the introduction, a planning process based on a
HTN representation first constructs a plan containing abstract
high-level activities and then refines these components in more
detail. This process of refinement continues until these high-level
activities correspond to the physical actions in the real world. The
advantage of this approach is that the feasibility of a plan can be
studied incrementally. If a DIPS agent is implementing the above
refinement process then domain knowledge of the tasks and their
components have to be codified in some language. We provide here
some examples of HTN representations (similar to Das, Fox et al.
(1997)) used in DIPS.

4.1 Compound Goals
A compound task specification used by DIPS has two
components: 1) a set of subtasks that compose a possible plan for
achieving the goal; 2) a set of temporal constraints including
constraints on the ordering of the subtasks. These subtasks may
also be compound themselves. A simplified example task
decomposition for a DIPS Satellite Agent is provided below:

infrared-picture[Start,End,Filter,Long,Lat] =

 { CameraAgent.picture[Start,End,Filter,Long,Lat];

 RecordingAgent.record[Start,End];

 TransmitterAgent.transmit[Start,End] }

 { task1 span 8; task2 span 2; task3 span 5;

 task1 before task2; task2 before task3;

 task1 during [Start,End]; task3 during [Start,End]; }

This defines the high-level goal “infrared-picture” in terms of its
subcomponents. Each of these subcomponents may be compound
in turn; a DIPS agent can only reason about the immediate sublevel
in the HTN. The example decomposition has three subtasks: 1) A
Camera Agent takes the picture; 2) A Recording Agent records the
picture; 3) A Transmitter Agent transmits the picture to Earth.

The second component of the example contains constraints that
relate the subtasks to each other and to the request domain. The
minimum duration of each subtask is specified as an integer by the
“span” constraints, while the rest of the constraints may be any of
those recognized by the DIPS constraint management layer. This
decomposition plan, a list of subgoals and temporal constraints, is
sent through a query to the SICStus Prolog scheduling predicate,
which returns a feasible instance of the schedule. (How this
instantiation is chosen is described in Section 6.) The agent can
then distribute the subtasks to the appropriate subagents with the
allocated portions of the original request domain.

4.2 Primitive Tasks
Each primitive task (or atomic action) in the DIPS scenario world
corresponds to a call made to a scripting language such as SCL.
These scripts themselves may contain several actions, but due to
the fixed nature of a primitive task, these are considered immutable
subatomic actions. An example of a primitive task specification
for a Power Agent is provided below:

power-on[Start,End] =

 { “power-on from <Start> to <End>“ }

 { task1 span 1 }

Here the “plan” for achieving this goal is simply a script call, and
the constraints component describes the minimum duration for the
task—in this case 1 time unit.

5. AGENT COMMUNICATION
Coherence, cooperation and conflict resolution can be improved
by carefully designing the amount and type of communication
among agents in the form of messages (Patil, Fikes et al. 1992).
The information communicated should be relevant, timely and
complete (Durfee 1985). Any inter-agent communication in DIPS
uses a KQML-compliant format to enhance robustness and
modularity.

A DIPS KQML message is considered valid if it has at least the
following fields: sender, receiver, id and path. Every KQML
message also has a performative that describes the type of

communication. Most messages also have a content field
containing an expression describing the purpose of the message.

Agents from the DIPS system currently use only a subset of the
standard KQML performatives. The most commonly used are the
following: insert, evaluate, confirm, authorize, and sorry.

Following is a simple example of a goal request sent from a
CameraAgent to a FilterAgent:

evaluate :content goal(set-filter[125,135])

:id Home-22-Satellite1-0-3-CameraAgent2-0-2

:priority 10 :sender CameraAgent2 :receiver
FilterAgent1

The id field describes the absolute path followed by this goal
request thread from its originating agent to the current node in the
HTN, including the index of the decomposition used and the index
of the subtask that spawned the current request.

6. DECENTRALIZATION AND
COORDINATION
The key concept of the DIPS system is to incrementally partition
the scheduling problem into smaller independent subproblems of
increasing granularity which can then be solved in parallel. While
this may sacrifice global completeness and optimality in the search
for a feasible plan, the distributed scheduling approach greatly
reduces the complexity of a large-scale multiple-resource
scheduling problem.

6.1 Least Commitment Scheduling
The important development made by the use of the constraint
management layer is that relational constraints on time and
resource consumption can be specified in the scheduling process.
This allows the full and precise description of plans and task
decompositions without any specification of actual start times.
Empowering a DIPS agent with this mentality of least commitment
allows reactive planning and dynamic rescheduling; the Prolog
scheduler will allow local changes to be made while adhering to the
original global constraints.

6.1.1 Recognized Temporal Constraints
As proposed by Allen (1984), we will recognize 7 basic temporal
relations between two actions. These relations for two actions, A
and B with intervals [SA,EA] and [SB,EB] respectively, are shown
below in Table 1. Any other relation can be expressed as the
inverse of one of these.

1. A before B EA<SB,

2. A during B SB<SA, EA<EB

3. A overlaps B SA<SB, SB<EA<EB

4. A equals B SA=SB, EA=EB

5. A meets B EA=SB

6. A starts B SA= SB, EA<EB

7. A finishes B SB< SA, EA= EB

Table 1: Recognized Temporal Constraints

The first three constraints, before, during, and overlaps, are the
three basic types of relations. Constraining two actions with these
relations allows some flexibility in the instantiation of real start
and end times. The last four can be considered special cases of the
basic types, which all involve reasoning about specific start or end
times for the actions and do not allow any flexibility for one event
once the other has been bound to a real interval.

6.2 Domain Distribution Algorithm
In contrast to previous distributed planning and scheduling
systems such as DAS (Burke 1991), DIPS employs a domain
distribution algorithm that typically allows a feasible plan to be
found after only the first coordination effort, therefore greatly
decreasing the need for inter-agent negotiation during the
scheduling process. As an extension to the least commitment
approach, each node in the DIPS HTN leaves as much flexibility
in the next sublevel as possible when coordinating the domain
distribution. The basic underlying algorithm: when choosing a
feasible schedule (partial ordering) of subtasks for a given
compound goal, allocate to each subtask as generous (large) a time
interval as possible without allowing global constraints to be
violated when the subtasks are instantiated on the next level in the
HTN.

The simplest solution is to allocate to each subtask a portion of
the whole domain the size of which is relative to the duration of
the subtask. This solution works perfectly well when dealing only
with the ordering of tasks (when the only type of constraint being
used is the before constraint). Consider the following example
decomposition: Two tasks, A with interval [SA,EA] and B with
interval [SB,EB], are to be scheduled during the request domain
[100,200]. The only constraints on the tasks are their durations A
spans 10, B spans 30, and A before B. The following schedule
could be generated that would satisfy the constraints without
using a generous distribution:

B

A
100 110

110 140

Using the DIPS generous approach to domain distribution,
however, these subtask domains would be as large as possible in
order to provide flexibility at lower levels in the HTN (note that
the ratio of the domain sizes A:B remains the same)

A

B

100 125

125 200

The second instance of the schedule will allow flexibility in the
instantiation of both subtasks when they are distributed to the
subagents. In both cases the original constraints are fulfilled, but
the first example is more likely to require inter-agent negotiation

(and thus to some extent a global search) when local resources are
overscheduled during certain intervals. The second example
demonstrates the least commitment paradigm by relaxing the
constraints on the tasks as much as possible.

6.2.1 Distribution Conflicts
Applying a generous domain distribution algorithm is clearly
simple in cases of basic ordering between tasks (only using the
before constraint). In order to distribute portions of a scheduling
problem that includes any of the other temporal relations, a
system for managing global constraints must be developed.

Let us consider a slightly more complicated example regarding the
same tasks A and B, except that they are related with the following
constraint: A overlaps B. (See Table 1.) A flawed generous
approach might produce this schedule instead:

A
100 125

B
115 190

Consider the possible instantiations for each subtask on the next
level of the HTN. It is entirely possible that A could start and
finish (e.g., [100,110]) before the start of B (e.g., [115,145])

The DIPS algorithm solves this problem by treating the
constraints during and overlaps as special cases. The Prolog
decomposition predicate increases the size of the domain of each
subtask within the following boundaries: if one subtask is related
to another by one of the inflexible constraints, (meets, starts,
finishes, equals), the domain size is left equal to the duration of
the subtask; if the subtask is constrained to other subtasks only
by the before relation, the domain size is expanded proportionally
to the duration of the subtask; if there exist any constraints
relating this subtask to another with during or overlaps, several
new variables are introduced in order to reason about the
constrained intervals. An interval [SB,EB] allocated for task B has
three components at the decomposition level: the domain start SB,
the domain end EB, and the expected duration spanned by the task
DB. By definition, DB =< EB – SB.

For every task A that is constrained to overlap B, the size of the
domains of A and B may be increased while A cannot be started
anywhere within its domain such that it does not overlap B, and
vice-versa. Compare this formula with the simple version of
overlaps in Section 3.3.

SA+DA>=EB–DB,

SB>=EA–DA,

EA<=SB+DB.

For every task A that is constrained to be during B, the size of the
domains of A and B may be increased while B cannot be started
anywhere within its domain such that it does not fully include the
domain of A.

EB–SA=<DB,

EA–SB=<DB.

Again examining the above intervals A=10 and B=30, the improved
generous approach might produce the following schedule instead.
This schedule still provides flexibility on the next level but
without the possibility of global constraint violation:

A
100 115

B
105 140

7. IMPLEMENTATION
The current system for simulating a scenario uses one main
Launcher application written in Java to start each DIPS agent as
an independent thread with its own initialization file of capability
insertions in the form of KQML messages. An interface to the
Launcher allows customization of the scenario at runtime.

Figure 3: DIPS Launcher Interface

In this example view, SAT3, has 5 Satellite siblings (middle row)
and 6 child agents (bottom row), each of which is a DIPS Resource
Agent. As shown above the link between certain agents can be
disabled to simulate a communications lapse. Through this
interface, trace files of inter-agent goal requests (in KQML format)
are introduced into the DIPS community. Whenever two task
requests conflict on a local resource, the DIPS System Agent that
originated the request will automatically attempt to reschedule
that subtask on the next cheapest resource.

Figure 4: Agent Local Schedule

Figure 4 shows the local schedule of a DIPS Transmitter agent,
containing three locally scheduled tasks, two of which (2-0, 3-0)
are conflicting, but only one of which, 2-0, is high priority (or
forced). Because task 2-0 is still tentative, the agent has allowed a
lower priority task to be given the same time interval. When the
task is authorized (finalized by the originating agent), it will force
out any conflicting requests due to its high priority. Thus in
Figure 5 below the conflicting request 3-0 has been removed from
the schedule once 2-0 was authorized.

Figure 5: Authorized Local Schedule

We can also see the resulting messages sent to Home1 in Figure 6.
Notice that the high priority task, 2-0, was successfully
authorized, while the conflicting low-priority task, 3-0, could no
longer be scheduled consistently on all necessary resources, and a
sorry message was therefore returned up the HTN to the Home1
DIPS agent.

Figure 6: Task Authorization Replies

In addition to dealing with request conflicts, we submit a set of
similar task requests within a certain time interval in order to
examine the performance of the DIPS-based community under
heavy request and scheduling loads. Communications travel in
both directions through the hierarchy, including confirm and sorry
replies from subagents pertaining to high-level goal requests. An
example scenario consisting of 4 System agents and 14 Resource
agents (a total of 18 HTN nodes) can distribute and schedule 35
high-level goal requests corresponding to 280 primitive tasks in
under 5 minutes, even when running on a single CPU.

8. CONCLUSION AND FUTURE WORK
In this paper, we have demonstrated how our distributed
approach to planning and scheduling helps to achieve high-level

goals and thereby enhances spacecraft autonomy. A hierarchical
syntax has been adopted for representing domain knowledge of
task decompositions and employed to solve the task
decentralization problem. A constraint propagation paradigm has
been employed for the required planning and scheduling tasks
performed by an autonomous agent, and an innovative system for
the decentralization of a global scheduling problem has been
developed and employed with promising results. Priority-based
scheduling has been implemented, and a hierarchical inter-agent
confirmation/authorization system was used for global goal
coordination.

The relative speed with which new requests can be processed
indicates two areas of success by the DIPS system: 1) efficient
multiple-resource scheduling in a distributed environment by
reduction of the complexity of the global scheduling problem; and
2) implementation of a generous domain distribution algorithm
that minimizes inter-agent negotiation. The global scheduling
problem in our multi-resource scheduling example would be
computationally difficult for a single scheduling agent to solve as a
whole; yet after decentralization through the DIPS HTN, the total
search space was reduced exponentially, and a solution was
produced with relative efficiency. A solution is found with much
greater efficiency while still satisfying global constraints.

The efforts of the DIPS system currently focus on schedule
creation and maintenance rather than on schedule optimization due
to the dynamic real-time nature of the application. Further efforts
include the use of CPU idle time for replanning and schedule
optimization based on cost utilities. Ongoing efforts also include
integration with SCL to enhance the real-time and real-world
applicability of the DIPS system. The initial scenario will be
augmented by incorporating actual capabilities of real satellites
such as NASA’s planned nanosatellite constellations in order to
model real problems that may arise. Actual task decompositions
of standard observing sequences will form the core of the task
requests.

Acknowledgements: The authors would like to thank Paul
Gonsalves and Dan Grecu of Charles River Analytics for their
contributions to the planning and scheduling algorithm and Allan
Posner of ICS for his contributions to the scenario. This work was
performed under contract NAS5-99168 with NASA Goddard
Space Flight Center.

9. REFERENCES
[1] Allen, J. F. (1984). “Towards a General Theory of Action

and Time.” Artificial Intelligence 23.

[2] Boddy, M. (1994). “Temporal reasoning for planning and
scheduling.” SIGART Bulletin 4(3).

[3] Burke, P., and Prosser, P. (1991). “A distributed
asynchronous system for predictive and reactive scheduling.”
Artificial Intelligence in Engineering 6: 106-124.

[4] CACM (1994). Intelligent Agents - Communication of the
ACM, ACM Press.

[5] Chaib-draa, B. M., Mandiau, R., and Millot, P. (1992).
“Trends in distributed artificial intelligence.” Artificial
Intelligence Review 6: 35-66.

[6] Chapman, D. (1987). “Planning for Conjunctive Goals.”
Artificial Intelligence 32: 333-378.

[7] Conry, S. M., R. and Lesser, V.R. (1988). Multiagent
negotiation in distributed planning. Reading in Distributed
Artificial Intelligence. A. a. G. Bond, L., Morgan Kaufmann:
367-384.

[8] Currie, K. a. T., A. (1991). “The Open Planning
Architecture.” Artificial Intelligence 52(1): 49-86.

[9] Das, S. K., J. Fox, et al. (1997). Decision Making and Plan
Management by Autonomous Agents: Theory,
Implementation, and Applications. First International
Conference on Autonomous Agents, California.

[10] Dean, T., Firby, R. J., and Miller, D. (1988). “Hierarchical
planning involving deadlines, travel time, and resources.”
Computational Intelligence 4: 381-398.

[11] Durfee, E. H., Lesser, V.R., and Corkill, D.D. (1985).
Increasing coherence in a distributed problem-solving
network. 8th International Joint Conference on Artificial
Intelligence.

[12] Ferguson, I. A. (1992). Touring Machines: AN Architecture
for Dynamic, Rational. Mobile Agents, Computer
Laboratory, University of Cambridge.

[13] Fikes, R. a. N., N. (1971). “STRIPS: A new approach to the
application of theorem proving to problem solving.” Artificial
Intelligence 2: 189-208.

[14] Genesereth, M. R. and S. P. Ketchpel (1994). “Software
Agents.” Communications of the ACM 37(7): 48-53.

[15] Georgeff, M. (1983). Communication and interaction in
multi-agent planning. AAAI.

[16] Georgeff, M. P. (1987). “Planning.” Annual Review in
Computer Science 2: 359-400.

[17] Interface & Control Systems, Inc. (1999).
http://www.sclrules.com/.

[18] LePape, C. (1990). Constraint propagation in planning and
scheduling.

[19] McAllester, D. a. R., D. (1994). Systematic nonlinear
planning. AAAI-94.

[20] Muller, J. P. a. P., M. (1994). Modeling interacting agents in
dynamic environments. 11th European Conference on
Artificial Intelligence.

[21] Muscettola, N. (1994). Integrating planning and scheduling.
Intelligent Scheduling. M. a. Z. Fox, M., Morgan Kaufmann.

[22] Patil, R. S., R. E. Fikes, et al. (1992). The DARPA
Knowledge Sharing Effort: Progress Report. Proceedings of
Knowledge Representation and Reasoning (KR%R-92). C.
Rich, W. Swartout and B. Nebel: 777-788.

[23] Pountain, D. (1995). “Constraint Logic Programming.” Byte.

[24] Rosenschein, J. S. (1982). Synchronization of multi-agent
plans. National Conference on Artificial Intelligence.

[25] Sacerdoti, E. (1974). “Planning in a hierarchy of abstraction
spaces.” Artificial Intelligence 5: 115-135.

[26] Simmons, R. (1991). “Coordinating planning, perception, and
action for mobile robots.” SIGART Bulletin 2: 156-159.

[27] Tate, A. (1977). Generating project networks. 5th
International Joint Conference on Artificial Intelligence.

[28] Wilkins, D. E. (1988). Practical Planning: Extending the
Classical AI Planning Paradigm, Morgan Kaufmann
Publishers.

